w(w+2)=35^2

Simple and best practice solution for w(w+2)=35^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for w(w+2)=35^2 equation:



w(w+2)=35^2
We move all terms to the left:
w(w+2)-(35^2)=0
We add all the numbers together, and all the variables
w(w+2)-1225=0
We multiply parentheses
w^2+2w-1225=0
a = 1; b = 2; c = -1225;
Δ = b2-4ac
Δ = 22-4·1·(-1225)
Δ = 4904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4904}=\sqrt{4*1226}=\sqrt{4}*\sqrt{1226}=2\sqrt{1226}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{1226}}{2*1}=\frac{-2-2\sqrt{1226}}{2} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{1226}}{2*1}=\frac{-2+2\sqrt{1226}}{2} $

See similar equations:

| -7+m/3=-4 | | 7+6m-7=16 | | 4=y=9.5 | | -1/2-2/3v=5/6 | | 0.50(12-2x)-4=5x+2(x-7) | | 13/30=7/5x-5/6 | | 85=25x17/5 | | -5+6r=-125 | | 1+4p+5=14 | | 4(x-3)+8=6x-4 | | 3x-5(x-2)=-4+3x-1 | | 25x17/5=85 | | 3-8p=147 | | -9(k+25)=0 | | a-21=-20 | | w+(w+2)=35^2 | | 8q+6=4q- | | w*(w+2)=1225 | | 8(y+83)=-48 | | 5p-1(2p-3)=2(2p-3)-4p | | 6+8x=50 | | m/7+-25=-22 | | 6(2x+8)=24 | | -5(x+1)-11=18+6 | | z/4+8=5.2 | | 10+65x2=140 | | 6x-5.1=4.3+3.2 | | 20-(2c+4)=2(c+3)+3 | | -5x-2=-14 | | 0.9^x=0.48 | | 0.08(y-2)+0.10y=0.14y-0.3 | | -7x=-1.56 |

Equations solver categories